Math 10A with Professor Stankova
Quiz 2; Wednesday, 9/6/2017
Section \#106; Time: 10 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. TRUE False The range of an invertible function $f$ is the domain of the inverse $f^{-1}$.
2. True FALSE If a function $f$ is defined at $x=0$, then we must have $\lim _{x \rightarrow 0} f(x)=f(0)$.

Show your work and justify your answers.
3. (10 points) Let $f(t)=\frac{\sqrt{9-t^{2}}-3}{t^{2}}$.
(a) (2 points) What is the domain of $f$ ?

Solution: The domain is when $9-t^{2} \geq 0$ and when $t^{2} \neq 0$. So $D=\left\{t: t^{2} \leq\right.$ $9\} \cap\{t: t \neq 0\}=[-3,0) \cup(0,3]=\{t:-3 \leq t \leq 3$ and $t \neq 0\}$.
(b) (3 points) Find $\lim _{t \rightarrow \sqrt{5}} f(t)$.

Solution: Since $f$ is continuous at $t=\sqrt{5}$, which we know since it is a combination of polynomials, the limit is just $f(\sqrt{5})=\frac{\sqrt{9-\sqrt{5}^{2}}-3}{\sqrt{5}^{2}}=\frac{\sqrt{4}-3}{5}=\frac{-1}{5}$.
(c) (5 points) Find $\lim _{t \rightarrow 0} f(t)$.

Solution: We have that

$$
\begin{gathered}
\lim _{t \rightarrow 0} \frac{\sqrt{9-t^{2}}-3}{t^{2}}=\lim _{t \rightarrow 0} \frac{\sqrt{9-t^{2}}-3}{t^{2}} \cdot \frac{\sqrt{9-t^{2}}+3}{\sqrt{9-t^{2}}+3} \\
=\lim _{t \rightarrow 0} \frac{9-t^{2}-9}{t^{2}\left(\sqrt{9-t^{2}}+3\right)}=\lim _{t \rightarrow 0} \frac{-1}{\sqrt{9-t^{2}}+3}=\frac{-1}{\sqrt{9}+3}=\frac{-1}{6} .
\end{gathered}
$$

